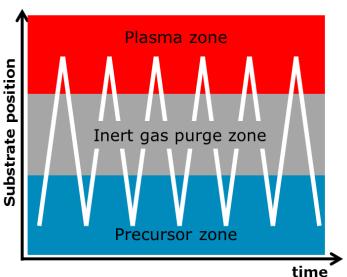
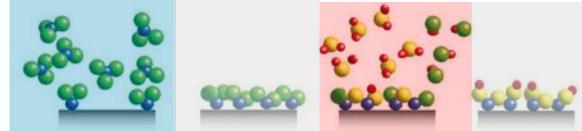

an enabling manufacturing technology for µm-thick ALD films


Sami Sneck, Mikko Söderlund, Markus Bosund, Pekka Soininen

China Semiconductor Technology International Conference Shanghai March 13, 2017


Pulsed versus Spatial ALD

Convential Pulsed ALD

- Precursors separated in time
- Substrate is stationary
- Precursor separation by inert gas purge step

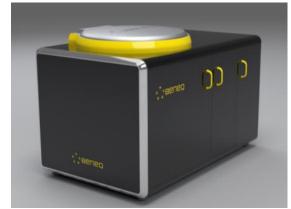
Spatial ALD

- Precursors separated in space
- Substrate is moving
- Precursor separation by inert gas purge zone

Beneq Spatial ALD

WCS 600 (2013)

- □ Roll-to-Roll
- → 500mm wide web


SCS 1000 (2015)

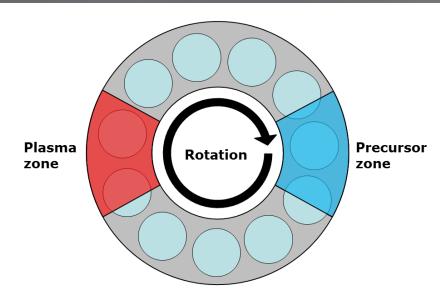
- □ Sheet-by-sheet
- ☐ Up to 400x600mm glass

Beneq R11

- □ Rotary
- □ Up to 200mm wafers

TFS 200R (2009)

- □ Rotary
- □ 100x300mm film



Why Rotary Spatial PEALD?

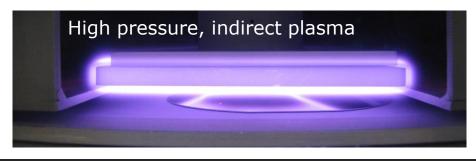
Benefits of rotary spatial PEALD

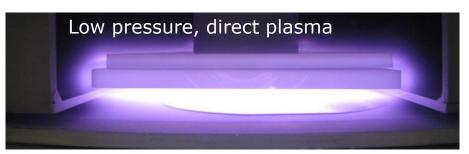
- □ High deposition rates (µm/h)
- Enables use of PEALD in batch mode, allowing new materials for batch production
 - Low temperature SiO₂
 - SiN
- Very low maintenance needs, only the donut-shaped area gets coated

- Prototype system used for process development
- Rotational speed up to 300 rpm
- □ Process temperature 20-150°C
- □ Process pressure ~100 Pa (~1 torr)
- Technology development in collaboration with Lotus

Film composition

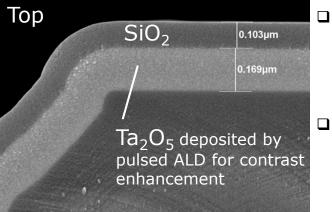
	Process Temperature	Rotation speed	Metal:Oxygen ratio (RBS)	Residual Carbon (SIMS)
SiO ₂	100C	200 rpm	0.46	<0.1%
TiO ₂	100C	200 rpm	0.50	2.5%
Ta ₂ O ₅	150C	120 rpm	0.37	2.0%

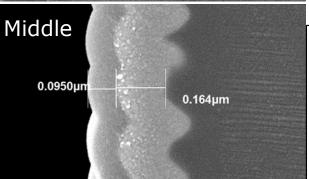

DC-plasma

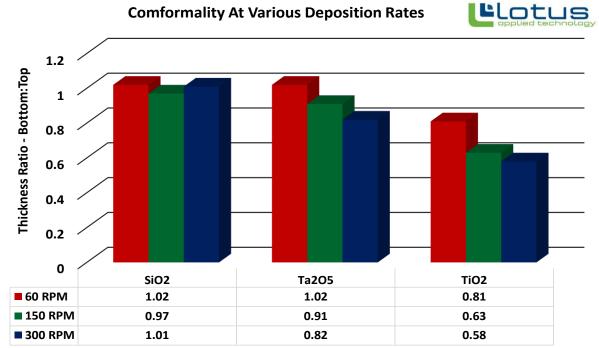

Voltage: 300-600 V

■ Current: ~0.5 A

Pressure: 100-200 Pa


- DC plasma and Substrate interaction can be easily controlled by process pressure
 - Lower pressure: direct plasma extends to substrate surface
 - Higher pressure: indirect plasma does not extend to substrate
- Enables in-situ plasma pre-clean or plasma post treatment
- Allows processing of sensitive substrates
- Enables film stress tuning




Conformality

- Silicon substrates prepared using "Bosch" Deep Reactive Ion Etch to mill trenches
- Comparison of bottomto-top film thickness using SEM

0.0912µm

Surface roughness

- □ Films Deposited on ¼" thick "Super Polished" fused silica substrate (pre-characterized)
- Surface roughness measured using a Zygo 5500 Heterodyne profilometer

	Film thickness (nm)	RMS Roughness (Å)	Peak-Valley Roughnes (Å)
SiO ₂	1 000	0.8	5.5
TiO ₂	240	0.6	4.0
Ta ₂ O ₅	250	0.5	2.9

□ Rotary Spatial PEALD (Beneq R11)

	Rotation speed (rpm)	Growth-per-cycle (Å)	Deposition rate (Å/min)	Batch size (wafers)
SiO ₂	200	1.20	240	10
Al_2O_3	200	1.70	340	10
TiO ₂	200	0.82	164	10
Ta ₂ O ₅	200	0.54	108	10

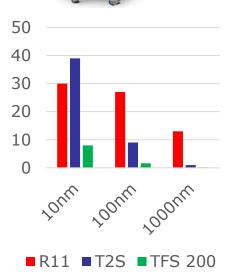
□ Conventional Pulsed PEALD (Beneq TFS 200)

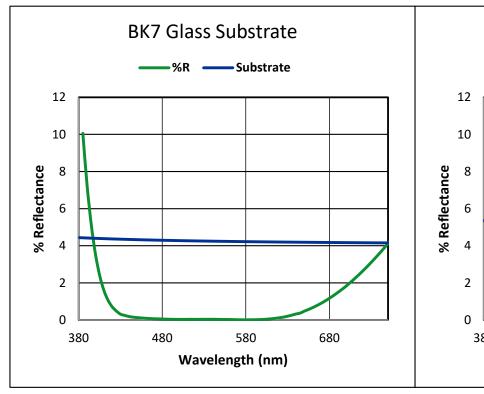
	Cycle time (s)	Growth-per-cycle (Å)	Deposition rate (Å/min)	
Al_2O_3	2	1.20	36	1

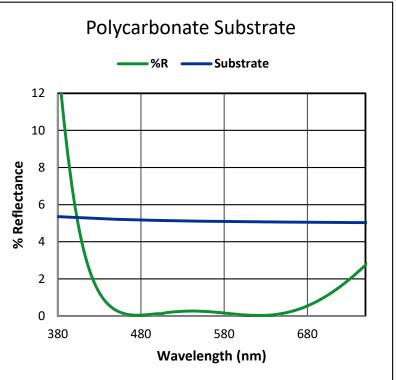
- \Box Deposition rate $\sim 10x$ higher with Rotary Spatial PEALD
- □ Batch size 10x larger
- □ Productivity ~100x higher!

Comparison of capacity with different wafer tool platforms

- all fully automated with transfer module, one ALD module, preheating station, cooling station and cassette load port


Rotary Spatial PEALD is superior for thick films


200mm wafers	R11	T2S	TFS 200
Batch size	10	25	1
Process type	PEALD	Thermal	Thermal/PEALD
Capacity (wph)			
10nm Al ₂ O ₃	30	39	8
100nm Al ₂ O ₃	27	9	1.6
1000nm Al ₂ O ₃	13	1.0	0.18



Case example: Deposition of an Anti-Reflective Coating

- \square SiO₂ and TiO₂, 4-layers, total thickness ~250nm
- Polycarbonate and BK7 glass substrate
- Process temperature 90°C
- □ Rotation speed of 200 RPM (200 ALD cycles per minute)

- ☐ Reflectance of about 0.07% for AR on glass.
 - R < 0.1% for range of 460nm to 615nm

- □ Rotary Spatial PEALD technology offers extremely high ALD deposition rates (in µm/h scale)
- □ Good conformality can be achieved at high deposition rate
- DC plasma process enables low temperature processing and stress control
- The optimal choice for applications requiring μm-scale film thickness, e.g.
 - optical coatings
 - insulators for high voltage applications
 - TCO layers

Meet us at: Semicon China -Hall W1, Booth #1135

